
Reconstructing Detailed Browsing Activities
from Browser History

Geza Kovacs
Stanford University

geza@cs.stanford.edu

ABSTRACT
Users’ detailed browsing activity – such as what sites they
are spending time on and for how long, and what tabs they
have open and which one is focused at any given time – is
useful for a number of research and practical applications.
Gathering such data, however, requires that users install
and use a monitoring tool over long periods of time. In
contrast, browser extensions can gain instantaneous access
months of browser history data. However, the browser history
is incomplete: it records only navigation events, missing
important information such as time spent or tab focused. In
this work, we aim to reconstruct time spent on sites with
only users’ browsing histories. We gathered three months
of browsing history and two weeks of ground-truth detailed
browsing activity from 185 participants. We developed a
machine learning algorithm that predicts whether the browser
window is focused and active at one second-level granularity
with an F1-score of 0.84. During periods when the browser
is active, the algorithm can predict which the domain the user
was looking at with 76.2% accuracy. We can use these results
to reconstruct the total time spent online for each user with an
R2 value of 0.96, and the total time each user spent on each
domain with an R2 value of 0.92.

Author Keywords
browsing histories; browsing activities; browser focus; web
browsing

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Knowing where users spend their time online, second-
by-second, has numerous applications to both research
and product. For example, productivity-tracking tools
like RescueTime provide information about how much
time users spend online on productivity and entertainment
sites. Browsing activity data is also essential for studying

phenomenon such as self-interruptions, where users may take
a break from work to spend time on other sites.

However, gathering browsing activity data is a long and
intrusive process. It requires the end user to install a
monitoring application — such as a browser extension —
that continually logs where users are spending their time, and
transmits it to a server. This requires extensive permissions
which may make users wary of participation, on suspicions
that the extension may be malware. The user must also
keep the extension installed over the duration of the study.
Most problematically, a longitudinal study is required, with
duration equivalent to the amount of browsing activity data
desired.

Browsing histories, in contrast, can be instantaneously
gathered by a browser extension. For a Chrome extension,
this requires only a Browsing History permission, which is
classified as low-risk. Browser histories can be automatically
or manually scanned and filtered before sending [9], and can
be uninstalled as soon as the history has been transmitted
to the server. Most promisingly, users’ browsing histories
can store up to several months of historical browsing data,
allowing us to instantly get results without a longitudinal
study.

In this work we aim to reconstruct four pieces of browsing
activity, using only browsing history:

• When is the browser focused and being actively used?
• What domain is the browser focused on at any given time?
• How much time did each user spend actively browsing?
• How much time did each user spend on each domain?

These tasks are non-trivial because the browsing history
represents only a thin slice: it logs events when a new page
is visited, not time spent within a page or switching/closing
tabs. This makes naive time-estimation heuristics fail on
pages where users might spend a long time without any record
in the browsing history (ie, watching a YouTube video, or
scrolling down a Facebook news feed).

To train and evaluate our reconstruction mechanism, we
gathered browsing histories, as well as two weeks of
second-by-second browsing activities, from 185 participants
recruited from Amazon Mechanical Turk. We utilize
domain-related and temporal features in a random forest to
outperform heuristics such as assuming a fixed time after a
page visit, and are able to correctly reconstruct the time the
user spent on domains with an R2 value of 0.92.

Figure 1. The top 10 domains for which we have time logged in our
dataset.

RELATED WORK

Gathering Browsing Activities
Gathering browsing activities by logging it in a longitudinal
study is a methodology that underlies a number of studies.
For example, Mark et al have conducted studies that relate
browsing activities to sleep debt [6] and stress [5], as well
as using them to investigate social media usage [8] and
multitasking [4].

Eyebrowse is an application where users can voluntarily
share their browsing activities [9]. They have gathered
a dataset of browsing activities from their userbase. We
complement Eyebrowse by gathering a larger longitudinal
dataset of full browsing activities and introducing a model
for reconstructing attention data. If our model is successful,
however, it may threaten some measure of users’ security on
Eyebrowse.

Estimating User Activities from Logs
Although no prior work has attempted to reconstruct
browsing activities from browsing histories, there has been
work on estimating user activities from logged data in other
contexts.

Huang et al. use mouse clicks and cursor movements to
estimate users’ gaze on search engine result pages [3, 2].
Park et al. investigate the relationship between video view
durations on Youtube and its view count, number of likes per
view, and sentiment in the comments [7]. They find that these
factors have significant predictive power over the duration the
video, and are able to predict the duration of video views with
an R2 value of 0.19.

DATASET

Dataset Collection
We first gathered a dataset of browsing activities and browser
histories. We recruited 225 participants from Mechanical
Turk, and asked them to install our extension which collects
browser histories and browsing activity events (window and
tab focus and switches, as well as mouse and keyboard
activity such as clicks and scrolls on pages), and transmits
it to our servers.

We paid users $2 for installing the extension, and gave a
bonus of $1 for each week they kept the extension installed.
We excluded users if they uninstalled the extension or became
inactive for more than 3 days. We were able to gather data
from 185 users in this way — most of the 40 who dropped
uninstalled the extension shortly after receiving the initial $2
payment. We split the 185 users into training and test sets (93
users in the training set, 92 users in the test set).

In Figure 1 we show the total amount of time spent on
each domain, across all users. The domain with the most
time spent is Mechanical Turk (as our users are from
Mechanical Turk), but the other sites are all broadly used and
representative of the sites used by a general audience.

Reference Browser Activity Data
The reference browser activity dataset was obtained by
logging open, close, switch, and change events for tabs and
windows via Google Chrome’s tab and window APIs for
extensions. We also logged when the user’s screen locked
or the browser became idle (defined by Chrome as 1 minute
without mouse or keyboard activity), via Chrome’s idle API
for extensions. For each event, we logged which tabs and
windows were open, the URLs they were visiting, and which
tabs were focused.

We then transformed this data into spans of time, which
record when the user starts and ends a period of activity on
a URL: the start occurs when the URL is visited or gains
tab focus, and the end occurs by navigating to a different
page, closing the tab or window, switching to a different tab,
browser window, or application, or if the browser becomes
idle or the screen is locked.

History Data
The history data was obtained via Chrome’s history API for
extensions. It includes the URL that was visited, the time it
was visited at, as well as how the visit occurred (by clicking
a link, reloading a page, navigation within a frame, etc).

While attempting to find the correspondences between our
history data and our reference browsing activities, we found
there existed some differences. Obviously, there are many
events such as tab switches and time spent scrolling down
a page that are only represented in the browsing activity
data. However, there are also some activities that occur
in the browsing history but not the browsing activity data.
One type of such event is navigation within frames, which
we corrected for by eliminating them from the history (the
browsing history explicitly marks navigation within frames
as such).

RECONSTRUCTION PROCEDURE
Since our goal is to be able to reconstruct, second-by-second,
whether the user’s browser is active and which domain they
are browsing, we broke this procedure into two parts:

• Estimate the spans during which the browser is active (as
opposed to the browser being closed, idle, or a different
window being in focus)

• Within a span in which we believe the browser to be active,
estimate which domain is being viewed at each point in
time.

WHEN WAS THE BROWSER ACTIVE?
We consider a browser to be active at a particular second
of time if the browser window is focused and there has
been mouse movement/scrolling/clicking, keyboard activity,
or navigation activity within the past minute. If the browser
window loses focus, is closed, or the screen is locked, we
consider the browser to be inactive from that second onwards.

Following common search engine practice, we consider a
browsing session to be a continuous period of time from the
first second when the browser is active, until 20 minutes after
the last second when the browser is active, such that there is
no continuous inactive period of more than 20 minutes.

Determining when the browser is active is a classification,
for each second in the browsing session, whether or not the
browser is active. We consider a true positive to be when we
correctly predict that the browser was active, a true negative
to be when we correctly predict that the browser was inactive,
a false positive to be when we predict the browser was active
when it was in fact inactive, and a false negative to be when
we predict the browser was inactive when it was in fact active.
(We could alternatively define our task as classifying whether
the browser is active or not for all seconds we have data
for, including out-of-session times, but our models correctly
classify all out-of-session times as being inactive, so with
the exception of true negatives on out-of-session seconds, the
tasks are equivalent).

If we did not have browsing history data for a user and only
had aggregate data about their activities, a baseline approach
might simply classify a user as being active in an all browsing
sessions, or as inactive in all browsing sessions (whichever
is more accurate for that particular user). This approach
achieves an F1-score of 0.72 and accuracy of 0.63.

If we do have browser history, a simple model for estimating
when the browser was active, is to simply guess that the
browser remained active for some amount of time (for
example, 1 minute or 2 minutes) after the last recorded event
in the history. For example, if we set the threshold at 1
minute, this would achieve an F1-score of 0.64 and accuracy
of 0.67. We tried various thresholds on our training data
(each 1-minute threshold from 1 minute to 10), and found
that a threshold of 5 minutes maximized both F1-score and
accuracy. This model achieves an F1-score of 0.79 and
accuracy of 0.76 on the test data.

We then developed a more sophisticated model for this binary
classification problem using machine learning. It is based on
the following intuitions:

• Browsing occurs in spans of activity – within a continuous
browsing span, the navigation activities will be densely
packed.

• The domain may influence the expected duration of the
visit – it may be a domain that users tend to stay on for
shorter or longer.

• The domain also influences how frequently navigation
events will occur – consider a domain that displays content
in a paginated format (where navigation events will occur
frequently and will be recorded in the history), versus a
single-page application with infinite scrolling (where no
navigation events will be recorded in the history).

We capture the importance of the domain and the browsing
spans using the following features for classification. For all
time-based features, we used the logarithm of the duration.

• Time between the most recent activity and next activity
in the history. If short, then the user is likely actively
browsing during that entire timespan.

• Time since the most recent activity in the history. If short,
the user is likely still on that page.

• Time until the next activity in the history. If short, the user
may have just switched back to the browser window but
has not yet made a navigation event.

• Domain on which the previous browsing activity occurred
in the history (categorical feature with 20 categories,
representing the top 20 most popular domains in the
training data).

• Domain on which the next browsing activity occurs in the
history (categorical feature with 20 categories).

• RescueTime productivity level of the domain (categorical
feature with 5 categories, drawn from the RescueTime
community).

For the two categorical features with domains, the 20 domains
we consider are the ones that had the most visits among
the users in the training set. We consider only the top
20 domains because of the way categorical features are
turned into a binary vector with length equal to the number
of possible categories (in our case, 20 binary features to
represent 20 possible domains), through a process known
as one-hot encoding. To avoid the curse of dimensionality
(which would lead to increased model complexity, training
time, and overfitting), we consider only the top 20 domains.

Productivity levels assigned one of 5 categories to each
domain: very productive, productive, neutral, distracting,
or very distracting. These classifications were drawn
from RescueTime, which obtained the classifications from
annotations by their userbase. Domains which RescueTime
does not have a productivity level for are assigned a default
neutral level. As this is also a categorical feature, this is
transformed into a length-5 binary feature vector via one-hot
encoding.

We then train a random forest with these features, using
H2O’s implementation of the random forest algorithm with
the default parameters [1].

Our model achieves an F1 score of 0.84 and accuracy of
0.80 on the task of predicting whether the browser is active
or not at a given second of time. In Figure 2, we show the
performance of our model on the task of classifying each in-
session second as either active or inactive, compared to each
baseline.

Figure 2. Performance of our machine learning method, versus various
simpler approaches, on the task of predicting whether the user’s browser
is active at a particular second within the browsing session.

Figure 3. In this graph, for each user in our test set, we plotted a point
for the total active time they spent online (x-coordinate is the actual time,
and the y-coordinate is the time our algorithm estimates).

Our model successfully classifies all out-of-session samples
as true negatives, so on the task of predicting whether the
browser is active or not at all times (including out-of-session,
e.g., while the user is sleeping), the precision, recall, and F1
scores remain equal, while accuracy rises to 0.96.

TOTAL TIME EACH USER SPENT BROWSING
Now that we have reconstructed whether a user is actively
using the browser at any given point in time, we can estimate
the total amount of time each user spent online. In Figure 5,
for each user we have plotted the reference time the user spent
online, against the time our algorithm estimates that the user
spent online (reconstructed by summing the active seconds
predicted by our classifier). The result is well-correlated, with
an R2 value of 0.96.

If we consider for each user the absolute error normalized by
the total reference time spent online, and take the mean across
users, the mean normalized absolute error for our predicted
total online times is 0.15 (σ=0.14). If we had instead used the
5-minute-threshold classifier for determining what the active-
browsing times were for each user, the mean normalized
absolute error for our predicted online times would be 0.19
(σ=0.21).

WHICH DOMAIN WAS FOCUSED?
Now that we have an estimation of when the browser was
active, we can determine which domain was focused at any
given point in time. The active domain often does not match
the most recent navigation event in the history, because users
switch tabs or keep multiple windows open.

If we had only aggregate data about users’ browsing activity,
we might simply always predict that that the user is on the
domain that they spend the most time on. This approach
predicts the domain correctly on 31.6% of seconds (among
the seconds the browser is active, on the users in the test set).

If we have browsing history data for a user, a simple heuristic
for predicting which domain the user is on is to assume that
we are browsing the page that was visited most recently. This
is able to predict the domain correctly on 74.2% of seconds in
the dataset (among the seconds the browser is active, on the
users in the test set).

We developed a more sophisticated model which treats
problem as a multi-class classification problem. Our model
attempts to decide between 4 classes for the domain the user
is currently on:

• The domain in the most recent navigation event in the
history, which we will refer to as C (for “current”)

• The domain in the next navigation event in the history,
which we will refer to as N

• The domain before C in the history (not matching C),
which we will refer to as P1 (“past, one back”)

• The domain before P1 the history (not matching C or P1),
which we will refer to as P2 (“past, two back”)

The intuition behind our model is that if a user has tabbed
over to a different tab, it must have been opened at some point
in the past – this is what P1 and P2 are designed to keep track
of (they approximate potential tabs that might be open in the
background). The type of domain also matters – users are
more likely to keep certain common sites, such as Facebook
or Gmail, open in the background than other pages. Finally,
if a user has switched to a different tab, they may eventually
navigate to another page from it, which will appear in the
browsing history.

We choose these 4 classes because they account for most
of the domains the user is on during browsing – in our test
data, 92.4% of active browsing time will be on one of these
domains. (As for the remaining 7.6% of time, for 6.3% the
domain visit appears further back in the browsing history,
while 1.3% do not appear in the history at all – we will discuss
reasons for this in the Discussion section).

Note that these classes can overlap (ie, N can equal C, P1,
or P2). In these cases, for the purpose of labeling samples in
our training data, we labeled it as the most common class it
could belong to (where the order of commonness is C, N, P1,
P2). In the 7.6% of seconds where the active domain did not
match any of C, N, P1, or P2, we did not include the sample
in our training data.

The features we used are described below. For all time-based
features, we used the logarithm of the duration. We will use

Figure 4. Confusion matrix for our random forest, which classifies each
active second of browsing as either the domain seen most recently in the
history (C), the next domain in the history (N), the domain before C in
the history (P1), or the domain before P1 in the history (P2).

the shorthand t(C) to refer to the time of the most recent
navigation event in the history, t(N) to refer to the time the
next navigation event, t(P1) to refer to the time of the most
recent history event where P2 appears, and t(P2) to refer to
the time of the most recent history event where P2 appears.

• Time between t(C) and t(N). If short, the user will likely
not be tabbing to other locations.

• Time that has elapsed since t(C). If short, the user is likely
still on domain C.

• Time until t(N). If short and N was already open as a tab,
the user may have switched to domain N.

• Time that has elapsed since t(P1). If long, the user is less
likely to be on P1.

• Time that has elapsed since t(P2).
• # of visits in the history that have occured since t(P1). If

large, the user is less likely to be on P1.
• # of visits in the history that have occured since t(P2).
• # of times in the past 20 minutes that a history event on N

follows an event on a different domain. If high, N is likely
to be a site that the user leaves open in the background.

• # of times in the past 20 minutes that a history event on C
follows an event on a different domain.

• # of times in the past 20 minutes that a history event on P1
follows an event on a different domain.

• # of times in the past 20 minutes that a history event on P2
follows an event on a different domain.

• Whether the referring visit id (the source page for the
navigation event) of N equals the visit id of C. If true, the
user had likely stayed on C prior to opening N.

• Whether the referring visit id of N equals the visit id of
P1. If true, the user had likely switched tabs to P1 prior to
opening N.

• Whether the referring visit id of N equals the visit id of P2.
• Which domain C, N, P1, and P2 are (each is a categorical

feature with 20 categories)
• Whether N is the same domain as C, P1, or P2 (these 3

binary features help resolve overlap in classes)

The categorical features representing domains represent the
20 most common domains in the training set. The referring
visit id feature makes use of a metadata field accessible
via Chrome’s history API which tells us which prior link a
particular visit came from, if it was accessed by clicking a
link.

We then train a random forest with these features, using
H2O’s implementation of the random forest algorithm with
the default parameters [1].

Figure 5. In this graph, for each user in our test set, we plotted a point
for each domain they visited representing the time spent on the domain
(x-coordinate is the actual time, and the y-coordinate is the time our
algorithm estimates).

Our model correctly predicts the domain in 82.5% of seconds
where it is one of C, N, P1, or P2. The confusion matrix
is shown in Figure 4, showing that most errors are with
rarer classes being mispredicted as more common classes.
However, because in 7.6% of the seconds the domain is not
one of C, N, P1, or P2 and hence cannot be correctly classified
by our model, then this results in our algorithm predicting the
correct domain 76.2% of the time (among the seconds the
browser is active, on the users in the test set).

HOW MUCH TIME WAS SPENT ON EACH DOMAIN?
Having now reconstructed the domains where users spent
their time on a second-by-second basis, we can now evaluate
how accurately this can be used to compute overall time
spent on domains. Overall time spent on domains is a useful
piece of data that can be used in several time-tracking and
productivity applications, as well as studies where time spent
online or on a specific service is of interest.

In Figure 5, for each user in our test set, we plotted a point for
each domain they visited, representing the relation between
actual time spent on the domain, versus our combined
prediction model’s predicted time (which was obtained by
first determining the active seconds with our browser-active
machine learning classifier, feeding this to our focused-
domain machine learning classifier, and summing over the
results). Our reconstructed total time spent on each domain
is well-correlated with the actual time spent. If we take the
mean of the R2 value over all users, we achieve a mean
R2 value of 0.92 (σ=0.122). If instead of our machine
learning classifiers we instead use the simpler 5-minute
active-threshold and most-recent-domain heuristic classifiers,
this achieves a mean R2 value of 0.91 (σ=0.123).

We also computed for each user the absolute error summed
over each domain prediction, and normalized it by the total
time spent. With our machine learning classifiers, the
mean of this normalized absolute error is 0.305 across users
(σ=0.129), while with the heuristic classifiers, the mean
normalized absolute error is 0.344 (σ=0.128).

DISCUSSION
We will now discuss sources of errors and limitations of our
technique, and how they might be addressed.

If we look back to our plot of reconstructed total domain-
focus times in Figure 5, we see that there are a handful of
outliers where we predict a much lower amount of browsing
than the reference. Many of these are due to rarer video sites
or long single-page articles which are not among the top 20
domains. Here, users might spend several minutes actively
browsing without any record in the history. A potential way
to fix this issue is to estimate the amount of time it would
take a user to consume the content within a given URL, using
a headless browser. For example, for video content, we could
scrape the page, see if there are any videos, and detect the
length of the video. We might then predict whether the user
had fully watched the video or not – based on whether the
next event in the browsing history occurred around when the
video would have finished playing. Analogously, for textual
content, we might estimate the amount of time needed to read
the article based on the amount of visible text, and develop
a model to predict whether the user had fully read the article
based on the surrounding browsing history. This information
could then be used to correct our estimate of how much time
the user had actually spent on the page.

Another underlying cause for some underestimates of time
spent was that the user had partially cleared their browsing
history – Chrome provides an option to clear browsing history
from the past hour. Although we had attempted to exclude
users who cleared their browsing histories from our training
and test datasets, our technique had only detected when users
had cleared at least a day’s worth of data (as our extension
sent the histories to our servers on a daily basis). Hence,
when making computations and inferences using browsing
histories, we must consider the possibility that the user may
have partially cleared their history.

We had mentioned that during 1.3% of all active browsing
seconds, the domain that the user was focused on did
not appear anywhere in the preceding browsing history.
Although part of this may have been due to users partially
clearning their browsing histories, another cause was that
URLs for certain non-http/https protocols are not logged in
the history. Among these, the chrome://newtab page which is
visited when the user opens a new tab accounts for nearly
half (0.6% of total active browsing seconds), while other
chrome:// URLs such as the the bookmarks, downloads,
settings, extension settings, and various extension-related
pages contributed to another 0.1% of total active browsing
seconds.

An additional limitaiton of our technique is that browsing
histories are not logged in incognito mode (this is Chrome’s

term for the private browsing mode), so we might not be
able to capture all browsing activity from users who use the
incognito feature. However, this limitation is also shared by
using a browser extension to log data, as browser extensions
are disabled in incognito mode by default.

CONCLUSION
Browsing activity data, which tells us on a second-by-second
basis whether the browser is active and which page is being
viewed, is useful for many experiments and applications,
but is difficult and time-consuming to gather as it requires
a longitudinal study. Browsing histories, in contrast, are easy
to gather – we can access several months of browsing history
data instantly simply by asking the user to install a Chrome
extension – but does not capture key details, such as when
the browser is in focus, when the user is actively browsing a
page, and when the user switches windows or tabs.

In this paper we used browser histories to reconstruct
estimates of 4 key elements of browsing activity: what times
the browser is active, which domain the user is focused on
when the browser is active, total time spent online, and total
time spent on each domain. We first gathered a dataset by
asking Mechanical Turk users to install our extension which
collects both longitudinal browsing activity data as well as
browser logs. We then used this gathered dataset to by
training a pair of machine learning algorithms, one of which
classifies whether the browser is active or not at a given
second, and another which identifies which domain is focused
when the browser is active. These metrics can be used to
derive how much time the user spent on each domain, as well
as the total time spent online.

These reconstructed browsing activities have many
applications, both for research and productivity applications.
For example, in the context of a productivity or time-tracking
application, we can bootstrap the process with our estimates
of time spent on each domain, allowing the user to see
(approximate) results immediately based on several months
of data. It can also be used to develop more robost sureveys,
and smarter interventions: rather than asking people to
self-report how much time they spend on sites like Facebook,
a survey can ask the user to install an extension that will
locally compute an estimate based on the user’s browsing
history, and fill out the question. If we collected these
reconstructed browsing activities for a pool of potential
participants and stored them in a database, experiments and
interventions that target particular populations – for example,
users who spend over four hours on Reddit each day – can
now much more effectively recruit participants based on their
browsing activities.

Reconstructed browsing activity data could also potentially
be used to gather data and identify patterns in browsing
behaviors faster and at larger scale than the small datasets
we can collect via longitudinal studies. We hope we might
be able to use these at-scale reconstructed browsing activities
to understand patterns of behaviors such as self-interruptions
during web usage, and use this to develop interventions
to improve users’ productivity. The ability to instantly
reconstruct several months’ worth of browsing activities by

asking the user to install an extension would open the gates to
a new class of intelligent productivity-enhancement, survey,
and data mining opportunities.

EXTENSION AND CODE
We have developed an open-source Chrome extension and
reconstruction code that allows researchers to access an
end-user’s reconstructed browsing activity and total time
spent per-domain from their own websites, once the user
has installed our extension. The Chrome extension is
available at https://github.com/gkovacs/browserlog and
the reconstruction code is at https://github.com/gkovacs/
browsing-behavior-reconstuction-analysis

REFERENCES
1. Breiman, L. Random forests. Machine learning 45, 1

(2001), 5–32.

2. Huang, J., White, R., and Buscher, G. User see, user
point: gaze and cursor alignment in web search. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2012), 1341–1350.

3. Huang, J., White, R. W., and Dumais, S. No clicks, no
problem: using cursor movements to understand and
improve search. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ACM (2011), 1225–1234.

4. Mark, G., Iqbal, S., Czerwinski, M., and Johns, P.
Focused, aroused, but so distractible: Temporal

perspectives on multitasking and communications. In
Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing, ACM
(2015), 903–916.

5. Mark, G., Wang, Y., and Niiya, M. Stress and
multitasking in everyday college life: an empirical study
of online activity. In Proceedings of the SIGCHI
conference on human factors in computing systems, ACM
(2014), 41–50.

6. Mark, G., Wang, Y., Niiya, M., and Reich, S. Sleep debt
in student life: Online attention focus, facebook, and
mood.

7. Park, M., Naaman, M., and Berger, J. A data-driven study
of view duration on youtube. In International AAAI
Conference on Weblogs and Social Media (2016).

8. Wang, Y., Niiya, M., Mark, G., Reich, S. M., and
Warschauer, M. Coming of age (digitally): An ecological
view of social media use among college students. In
Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing, ACM
(2015), 571–582.

9. Zhang, A. X., Blum, J., and Karger, D. R. Opportunities
and challenges around a tool for social and public web
activity tracking. In Proceedings of the 19th ACM
Conference on Computer Supported Cooperative Work &
Social Computing, ACM (2016).

https://github.com/gkovacs/browserlog
https://github.com/gkovacs/browsing-behavior-reconstuction-analysis
https://github.com/gkovacs/browsing-behavior-reconstuction-analysis

	Introduction
	Related Work
	Gathering Browsing Activities
	Estimating User Activities from Logs

	Dataset
	Dataset Collection
	Reference Browser Activity Data
	History Data

	Reconstruction Procedure
	When was the browser active?
	Total time each user spent browsing
	Which domain was focused?
	How much time was spent on each domain?
	Discussion
	Conclusion
	Extension and Code
	REFERENCES

